

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2011 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 15748-29:2011 D/E/F

CEN

WORKSHOP

AGREEMENT

 CWA 15748-29

 September 2011

ICS 35.240.40

English version

 Extensions for Financial Services (XFS) interface specification -
Release 3.10 - Part 29: XFS MIB Architecture and SNMP

Extensions MIB Version 3.10

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 15748-29:2011 (E)

2

Table of Contents

FOREWORD .. 3

1. INTRODUCTION .. 6

1.1 ARCHITECTURE ... 7

2. XFS MIB.. 9

2.1 GENERAL INFORMATION .. 9
2.2 MANAGED SERVICE INFORMATION .. 12

2.2.1 xfsXXXStatusTable .. 15
2.2.2 xfsXXXSubDeviceTable .. 15
2.2.3 xfsXXXErrorTable ... 16
2.2.4 xfsXXXResetTable ... 16
2.2.5 xfsXXXResetDeviceTable .. 17
2.2.6 xfsXXXCapabilitiesTable ... 18

2.3 XFS TRAPS .. 18
2.3.1 Device Status Changes .. 20
2.3.2 Hardware and Software Errors .. 23
2.3.3 Common Trap Variables ... 25
2.3.4 Threshold Status Changes ... 27
2.3.5 Agent heartbeat notification .. 29

3. XFS REGISTRY CONFIGURATION ... 32

3.1 XFS COMMON MANAGEMENT CONFIGURATION .. 32
3.2 MANAGED SERVICES CONFIGURATION .. 32

4. XFS SERVICE PROVIDER INTERFACE MANAGEMENT EXTENSIONS 35

4.1 WFS_INF_XXX_CAPABILITIES .. 35
4.2 WFS_INF_MIB_GET_RESPONSE_COUNTS ... 35
4.3 WFS_INF_MIB_SET_RESPONSE_COUNT ... 37
4.4 WFS_INF_MIB_RESET_RESPONSE_COUNTS .. 37

5. APPENDIX A - GENERAL MIB SUB-TREE ... 39

5.1 GENERAL MIB AND TRAP MIB IN SMIV2 AND SMIV1 FORMAT ... 39

6. APPENDIX B - C-HEADER FILES ... 52

6.1 XFSMIB.H ... 52

CWA 15748-29:2011 (E)

3

Foreword

This CWA is revision 3.10 of the XFS interface specification.

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested

parties on 2007-11-29, the constitution of which was supported by CEN following the public call for

participation made on 1998-06-24. The specification is continuously reviewed and commented in the CEN/ISSS

Workshop on XFS. It is therefore expected that an update of the specification will be published in due time as a

CWA, superseding this revision 3.10.

A list of the individuals and organizations which supported the technical consensus represented by the CEN

Workshop Agreement is available to purchasers from the CEN-CENELEC Management Centre. These

organizations were drawn from the banking sector. The CEN/ISSS XFS Workshop gathered suppliers as well as

banks and other financial service companies.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider - Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference

Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the

SNMP standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions MIB Version 3.10

Part 30: XFS MIB Device Specific Definitions - Printer Device Class MIB 3.10

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class MIB 3.10

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class MIB 3.10

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class MIB 3.10

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class MIB 3.10

Part 35: XFS MIB Device Specific Definitions - Depository Device Class MIB 3.10

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class MIB 3.10

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class MIB 3.10

CWA 15748-29:2011 (E)

4

Part 38: XFS MIB Device Specific Definitions - Camera Device Class MIB 3.10

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class MIB 3.10

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Device Class MIB 3.10

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class MIB 3.10

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Class MIB 3.10

Part 44: XFS MIB Application Management MIB 3.10

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class MIB 3.10

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class MIB 3.10

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class MIB 3.10

Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version

3.0 (see CWA 14050) to Version 3.10 (this CWA) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version

3.10 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.02 (see CWA 14050) to Version

3.10 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.0 (see CWA 14050) to Version 3.10

(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.03 (see CWA 14050) to Version 3.10

(this CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.0 (see CWA 14050) to

Version 3.10 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.0 (see CWA 14050) to Version 3.10 (this

CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.0 (see CWA 14050) to Version

3.10 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.01 (see CWA 14050) to

Version 3.10 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.0 (see CWA 14050) to

Version 3.10 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.0 (see CWA 14050) to Version 3.10 (this

CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.0 (see CWA 14050) to Version 3.10 (this

CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.0 (CWA 14050) to Version

3.10 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.02 (see CWA 14050) to Version

3.10 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a

complementary document, called Release Notes. The Release Notes contain clarifications and explanations on

the CWA specifications, which are not requiring functional changes. The current version of the Release Notes is

available online from http://www.cen.eu/cen/pages/default.aspx.

The information in this document represents the Workshop's current views on the issues discussed as of the date

of publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS

makes no warranty, express or implied, with respect to this document.

CWA 15748-29:2011 (E)

5

The formal process followed by the Workshop in the development of the CEN Workshop Agreement has been

endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC

Management Centre can be held accountable for the technical content of the CEN Workshop Agreement or

possible conflict with standards or legislation. This CEN Workshop Agreement can in no way be held as being

an official standard developed by CEN and its members.

The final review/endorsement round for this CWA was started on 2010-06-17 and was successfully closed on

2010-12-22.The final text of this CWA was submitted to CEN for publication on 2011-01-27.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of

CEN: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,

Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,

Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be

addressed to the CEN-CENELEC Management Centre.

Revision History:

1.0 January 20, 2004 Initial release of XFS MIB specification.

1.10 April 15, 2007 Update of the MIB to add support for a Detailed Status Trap,

a Device Reset capability and the support of SMIv2.

3.10 December 14, 2010 Update of the MIB to add support for a Capabilities table and

to align the MIB with XFS 3.10.

CWA 15748-29:2011 (E)

6

1. Introduction

This specification describes the general MIB definition (Management Information Base) for the XFS

environment and some new APIs that allow network management of Service Providers from the application

layer.

This specification is mainly focused on the following areas:

 SNMP management architecture

 MIB structure definition

 Trap format definition

 Management extension of the Service Providers Interface

Full implementation of the above features depends on the individual vendor-supplied Service Providers. This

specification outlines the functionality and requirements for applications using the XFS network management

services, and for the development of those services.

The XFS device specific MIB and the application MIB definitions will be defined in separate documents.

An agent is compliant with the XFS MIB, if it supports the XFS MIB as defined in this specification and the

referenced device/application specific XFS MIB specifications. No restrictions are placed on how an agent is

implemented.

The MIB feature is an optional addendum to the XFS CWA. In addition, the main focus of this standard is on the

standardisation of the MIB specification, not any specific implementation. From a management perspective, the

key to multi-vendor management is that the MIB and values are consistent

CWA 15748-29:2011 (E)

7

1.1 Architecture

The architecture and information exported for application management is defined within the XFS MIB

Application Management specification. The remainder of this specification defines how devices are managed.

The MIB definition specifies what information a Service Provider (i.e. a Service Provider of a generic XFS

class) must export in order to be handled by a management application.

The use of information exported by the Service Providers is up to the Solution Providers. They can provide this

information to the network management system via SNMP, using an SNMP agent that answers queries on the

XFS MIB. They can also use this information for local management.

The exported information is organized into a set of device status variables and a set of response counters. The

device status variables describe the current state of the devices (e.g. for a card reader unit, the number of cards

retained). The response counters indicate the number of times each response has been returned to each of the

execute commands the Service Provider supports.

The management information is presented in logical view, since this is the view presented by XFS. The logical

view is provided through the concept of managed services. There is one managed service for every logical

interface offered by a physical device. Each managed service has a unique sub-tree within the XFS MIB. Each

managed service provides a mapping from the managed services to the physical devices associated with each

managed service. This provides support for simple devices with a single interface or compound devices with

multiple interfaces. The managed service MIB entries on compound devices are linked through the

xfsManagedServicePhysicalDeviceName value which contains the same physical device name.

This is best illustrated by way of example:

a) On a standard card reader, there would be one managed service representing the IDC class interface. The

MIB would contain a single branch for the managed service. The xfsManagedServicePhysicalDeviceName

MIB variable would define the name of the physical IDC device.

b) On a cash recycler, which is a compound device, there would be one managed service for the CDM interface

and one managed service for the CIM interface. The MIB would contain two branches, one for each

managed service. The xfsManagedServicePhysicalDeviceName MIB variable within the two MIB branches

would contain the same name, that of the physical recycle device.

c) On a card reader with a single user card IDC interface and 3 permanent chip IDC interfaces (i.e. 3

permanent chips on the device), there would be 4 managed services in total, one for each logical interface.

The MIB would contain four branches, one for each managed service. The

xfsManagedServicePhysicalDeviceName MIB variable within the four MIB branches would contain the

same name, that of the physical IDC device.

The managed services are configured through the XFS registry and are fully described in the “Registry

Configuration” section.

Devices, which have logical sub-devices, can also report the status of these sub devices. For example, the Cash

Units within the CDM and CIM classes are treated as sub-devices.

The solution provider vendors or third parties, using both the SNMP standard interface and the API defined in

this document, can develop management applications for the XFS environment.

CWA 15748-29:2011 (E)

8

Management information is divided into general information and device class specific information.

General information allows a management application to know the configuration of the installed managed

services and associated physical devices. This information is stored in the XFS configuration registry using

registry keys as described in the “Registry Configuration” section.

The XFS SNMP agent directly accesses general management information. Device specific information storage is

vendor dependent.

The XFS SNMP agent can access device management information through the Service Provider Interface.

A basic feature of the SNMP agent is to be able to notify the remote manager application when an alarm

condition occurs (traps). In order to generate traps, the SNMP agent should register for receiving all error and

threshold condition notifications from all devices installed on a system. Devices notify error conditions, by the

WFS_SYSE_DEVICE_STATUS, the WFS_SYSE_HARDWARE_ERROR and the

WFS_SYSE_SOFTWARE_ERROR system events. Devices notify threshold conditions by the

WFS_USRE_XXX_THRESHOLD user events. When the agent receives one of the above events, then a trap is

generated. On version 1.0 of the MIB only the summary Device Status Change Trap is generated. On version 1.1

of the MIB and higher, both the summary and detailed Device Status change traps will be generated.

XFS Manager

Service Provider

Interface

Consumer

Application

Supervisor

Application

SNMP

Application

Agent

 M

 S A

 N N

 M A

 P G

 E

 R

Service

Provider

Service

Provider

Service

Provider

SNMP

XFS

Agent

Service Provider Vendors

Solution Provider Vendors

CWA 15748-29:2011 (E)

9

2. XFS MIB

The CEN/ISSS XFS Workshop have obtained a Private Enterprise Number from the IANA (Internet Assigned

Number Authority). The Private Enterprise Number assigned to the CEN/ISSS XFS Workshop is 16213, this

number is represented by xfsMIBRoot within the rest of the XFS MIB documentation.

Under the xfsMIBRoot standard tree there are three main sub-trees:

xfsMIBRoot

 xfsGeneral (1)

 xfsManagedService (2)

 xfsTrap (3)

 xfsManagedApp(1000)

The xfsGeneral sub-tree contains information about the XFS environment. Under the xfsGeneral sub-tree there is

a node that identifies the general version of the XFS MIB: xfsMIBV1 identifies the first version:

xfsMIBRoot(16213)

 xfsGeneral (1)

 xfsMIBV1 (1)

The xfsManagedService sub-tree contains all information needed to define the device status and counters for

each XFS class.

The xfsTrap sub-tree contains variables referenced from within the XFS Traps.

The xfsManagedApp sub-tree contains all the information relating to application management. This detail is

defined in the XFS MIB application Management specification.

The XFS MIB definition is completed with a definition of how the agent must give unexpected information (i.e.

a hardware error on a device) to the management centre (SNMP Manager), or in other words the definition of

XFS traps.

2.1 General Information

The xfsGeneral.xfsMIBV1 sub-tree of XFS MIB tree contains essential configuration information and it allows

the identification of each of the sub-trees describing the devices. It contains the following variables:

 The xfsMIBRelease(1) which represents the XFS MIB version. It is a 32 bit numerical field. The

low-order word contains the version number, while the high-order word must be set to zero. In the

low-order word, the low-order byte specifies the major version number and the high-order byte

specifies the minor version number. The major version number is equal to the value of xfsMIBV1.
NOTE 1 In order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor version

number should always be expressed as two decimal digits, i.e., 1.10, 1.11, 1.20, etc.

 The xfsXFSRelease(2) which represents the XFS reference version, i.e. the XFS documentation

release version that the MIB corresponds to. It is a 32 bit numerical field. The low-order word

contains the version number, while the high-order word must be set to zero. In the low-order word,

the low-order byte specifies the major version number and the high-order byte specifies the minor

version number.
NOTE 2 In order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor version

number should always be expressed as two decimal digits, i.e., 1.10, 1.11, 1.20, etc.

 The xfsJXFSRelease(3) which represents the J/XFS MIB reference version, i.e. the J/XFS

documentation release version that the MIB corresponds to. It is a 32 bit numerical field. The low-

order word contains the version number, while the high-order word must be set to zero. In the low-

order word, the low-order byte specifies the major version number and the high-order byte specifies

the minor version number.
NOTE 3 In order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor version

number should always be expressed as two decimal digits, i.e., 1.10, 1.11, 1.20, etc. The current XFS MIB

does not support J/XFS so this entry will contain 0x00000000.

CWA 15748-29:2011 (E)

10

 The xfsManagedServices(4) which represents the number of managed services installed. The

managed services are enumerated from the MANAGEMENT_PROVIDERS configuration section

of the XFS registry. It is a 32 bit numerical field.

 The xfsManagedServiceTable(5) branch defines a MIB table. Each table entry is intended to

provide unchangeable information about each managed service and their associated physical devices

installed on the system and contains following variables:

 The xfsManagedServiceName(1): the name of the management service. It is a Display

String field.

 The xfsManagedServiceClass(2): the identifier of the XFS class. It is a 32 bit numerical

field.

 The xfsManagedServiceType(3): the identifier of the XFS type. It is a 32 bit numerical

field.

 The xfsManagedServiceOID(4): The OID of the sub-tree within xfsManagedService

defining the management information for this class of managed service, e.g. the PTR

class is represented by .1.3.6.1.4.1.16213.2. It is a Display String field.

 The xfsManagedServicePhysicalDeviceName(5): the name of the physical device or

devices associated with this managed service. (See the Section “Registry

configuration”). It is a Display String field. Where more than one physical device is

associated with the managed service, each physical device name is comma separated.

 The xfsManagedServiceVendor(6): the vendor name of the Service Provider. It is a

Display String field.

 The xfsManagedServiceMIBClassRelease(7): the XFS MIB class release. It is a 32 bit

numerical field. The low-order word contains the version number, while the high-order

word must be set to zero. In the low-order word, the low-order byte specifies the major

version number and the high-order byte specifies the minor version number. The major

version number is equal to the value of the XFS MIB device class release node.

 The xfsManagedServiceInstance(8): an identifier for the instance of the device class. It

is a 32 bit numerical field. Its value is determined by the agent.

 The xfsAgentHeartbeatInterval(6) which represents the interval of the XFS SNMP Agent‟s

Heartbeat notification in integer 32 format. This is a read-write variable representing the number of

minutes. A zero (0) value turns off the heartbeat notification.

The following picture below shows the structure of the General branch of the XFS MIB release one. The

xfsManagedServiceTable entry is indexed by xfsManagedServiceName.

CWA 15748-29:2011 (E)

11

16213 xfsMIBRoot

1 xfsGeneral

 1 xfsMIBRelease

 4 xfsManagedServices

 5 xfsManagedServiceTable

sub-tree

MIB variable

1 xfsManagedServiceName (index)

2 xfsManagedServiceClass

3 xfsManagedServiceType

4 xfsManagedServiceOID

5 xfsManagedServicePhysicalDeviceName

6 xfsManagedServiceDeviceVendor

7 xfsManagedServiceMIBClassRelease

8 xfsManagedServiceInstance

1 xfsMIBV1

 1 xfsManagedServiceEntry

 2 xfsXFSRelease

 3 xfsJXFSRelease

 6 xfsAgentHeartbeatInterval

As an example, the identifier of the value of xfsManagedServiceVendor for a card reader with an

xfsManagedServiceName equal to “MCRW1” is as follows:

Character M C R W 1

ASCII HEX 4D 43 52 57 31

ASCII Decimal 77 67 82 87 49

NOTE 4 SNMP OID representation of strings consists of a length field specifying the number of characters in

the string followed by the ASCII code in decimal for each character in the string. Therefore the OID of

the above example is:

xfsMIBRoot.1.1.5.1.6.5.77.67.82.87.49

CWA 15748-29:2011 (E)

12

2.2 Managed Service Information

The managed service sub-tree, xfsManagedService, is located under the XFS MIB root, XFSMIBRoot. It

contains one sub-tree for each XFS class.

 xfsPTR (1)

 xfsIDC (2)

 xfsCDM (3)

 xfsPIN (4)

 xfsCHK (5)

 xfsDEP (6)

 xfsTTU (7)

 xfsSIU (8)

 xfsVDM (9)

 xfsCAM (10)

 xfsALM (11)

 xfsCEU (12)

 xfsCIM (13)

 xfsCRD (14)

 xfsBCR (15)

 xfsIPM (16)

The definition of every class specific sub-tree can be found in the following documents:

XFS MIB device specific definitions – PTR Device Class

XFS MIB device specific definitions – IDC Device Class

XFS MIB device specific definitions – CDM Device Class

XFS MIB device specific definitions – PIN Device Class

XFS MIB device specific definitions – CHK Device Class

XFS MIB device specific definitions – DEP Device Class

XFS MIB device specific definitions – TTU Device Class

XFS MIB device specific definitions – SIU Device Class

XFS MIB device specific definitions – VDM Device Class

XFS MIB device specific definitions – CAM Device Class

XFS MIB device specific definitions – ALM Device Class

XFS MIB device specific definitions – CEU Device Class

XFS MIB device specific definitions – CIM Device Class

XFS MIB device specific definitions – CRD Device Class

XFS MIB device specific definitions – BCR Device Class

XFS MIB device specific definitions – IPM Device Class

Under each class sub-tree there is a node that identifies the version of the XFS MIB device class release. For

example:

xfsMIBRoot

 xfsManagedService (2)

 xfsPTR (1)

 xfsPTRV1 (1)

For each XFS class, the version one sub-tree has the following variables defined:

 xfsXXXInstances(1) number that represents the number of managed services (for the XXX class)

installed on the XFS subsystem. It is a 32 bit numerical field.

 xfsXXXStatusTable(2) defines a set of MIB status tables, one for each managed service of the

selected XXX XFS class. This table contains the status information for the managed service.

 xfsXXXSubDeviceTable(3) defines a set of MIB status tables for sub devices, one for each sub-

device of the selected XXX XFS class. Typically this table is used to contain the status information

for cash units on a CDM or CIM device.

 xfsXXXErrorTable(4) defines a set of MIB error tables, one for each managed service of the

selected XXX XFS class. This table contains counts representing how often each of the possible

response codes for each command has been generated.

CWA 15748-29:2011 (E)

13

 xfsXXXResetTable(5) defines a set of MIB reset tables, one for each managed service of the

selected XXX XFS class. This table allows all of the response counters for a managed service to be

reset to zero.

 xfsXXXResetDeviceTable(6) defines a set of MIB reset device tables, one for each managed service

of the selected XXX XFS class. This table allows the device to be reset remotely.

 xfsXXXCapabilitiesTable(7) defines a set of MIB capabilities tables, one for each managed service

of the selected XXX XFS class. This table contains the capability information for the managed

service.

The following picture shows the structure of the xfsXXXV1 sub-tree of the XFS MIB as an example of an

xfsManagedService (2) branch.

CWA 15748-29:2011 (E)

14

16213 xfsMIBRoot

2 xfsManagedService

n xfsXXX, e.g. PTR

 1 xfsXXXInstances

sub-tree

MIB variable

1 xfsXXXV1

V12 xfsIDC

1 xfsXXXStatusManagedServiceName (index)

2 xfsXXXStatusNumberSubDevices

3 ………………………………….

1 xfsXXXStatusEntry

2 xfsXXXStatusTable

4 xfsXXXErrorTable

1 xfsXXXErrorEntry

1 xfsXXXErrorManagedServiceName (1
st
 index)

2 xfsXXXErrorCommandCode (2
nd

 index)

3 ……………………………………..

5 xfsXXXResetTable

1 xfsXXXResetEntry

1 xfsXXXResetManagedServiceName (index)

2 xfsXXXResetAll

3 xfsXXXResetTimestamp

1 xfsXXXSubDeviceManagedServiceName (1
st
 index)

2 xfsXXXSubDeviceIndex(2
nd

 index)

3 ..

1 xfsXXXSubDeviceEntry

3 xfsXXXSubDeviceTable

6 xfsXXXDeviceResetTable

1 xfsXXXDeviceResetEntry

1 xfsXXXResetDeviceManagedServiceName (index)

2 xfsXXXResetDeviceAction

3 …………………………………………

7 xfsXXXCapabilitiesTable

1 xfsXXXCapabilitiesEntry

1 xfsXXXCapabilitiesManagedServiceName (index)

2 xfsXXXCapabilitiesDeviceType

3 …………………………………………

Note that some devices do not have sub-devices,

but the OID is reserved for future enhancement

and for consistency across devices.

CWA 15748-29:2011 (E)

15

2.2.1 xfsXXXStatusTable

The status table provides access to the device status values (as defined in the class specific MIB documentation)

and is indexed through a single parameter, xfsXXXStatusManagedServiceName. This information returned in this

table is obtained from the CEN XFS WFS_INF_XXX_STATUS command.

The following status table entries are common to all device classes, the other entries are defined in the class

specific MIB documentation.

 The xfsXXXStatusManagedServiceName(1): the name of the managed service. It is the index to

the status table and is a Display String field.

 The xfsXXXStatusNumberSubDevices(2): the number of sub-device for this instance. It is a 32

bit numerical field.

 The xfsXXXStatusDevice(3): The device status value for the managed service.

The xfsXXXStatusManagedServiceName parameter corresponds to the value of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceEntry.xfsManagedServiceName

in the general table, e.g. “Printer1”.

All device status variables are read-only.

As an example, the identifier for the device status value of xfsPTRStatusDevice(3) for a device with managed

service name equal to “Printer1” is as follows:

Character P r i n t e r 1

ASCII Hex 50 72 69 6E 74 65 72 31

ASCII Decimal 80 114 105 110 116 101 114 49

NOTE SNMP OID representation of strings consists of a length field specifying the number of characters in

the string followed by the ASCII code in decimal for each character in the string. Therefore the OID of the above

example is:

xfsMIBRoot.2.1.1.2.1.3.8.80.114.105.110.116.101.114.49

2.2.2 xfsXXXSubDeviceTable

The sub-device table provides access to the device status values for sub devices within a service class. For

example, on a CDM the cash units are represented as sub-devices. However, not all service classes require sub-

devices, in this case the xfsXXXStatusTable entry, xfsStatusNumberSubDevices will be zero and although the

sub-device table will exist it will have no entries.

The following sub-device status table entries are common to all sub-devices, the other entries are defined in the

class specific MIB documentation.

 The xfsXXXSubDeviceManagedServiceName(1): the name of the managed service that the sub-

device belongs to. It is the index to the sub-device status table and is a Display String field.

 The xfsXXXSubDeviceIndex(2): the 2
nd

 index identifying the specific sub-device within the

managed service. It is a 32 bit numerical field, with a valid range from 1 to the number of sub

devices defined within xfsXXXStatusNumberSubDevices variable within the corresponding

managed service status table entry.

The xfsXXXStatusManagedServiceName parameter corresponds to the value of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceEntry.xfsManagedServiceName

in the general table, e.g. “CDM1”.

All sub-device status variables are read-only.

As an example, the identifier for the Type, xfsCDMSubDeviceType(3), value within the first Cash Unit (i.e. the

first sub-device) for a device with managed service name equal to “CDM1” is as follows:

CWA 15748-29:2011 (E)

16

Character C D M 1

ASCII Hex 43 44 4D 31

ASCII Decimal 67 68 77 49

NOTE SNMP OID representation of strings consists of a length field specifying the number of characters in

the string followed by the ASCII code in decimal for each character in the string. Therefore the OID of the above

example is:

xfsMIBRoot.2.3.1.3.1.3.4.67.68.77.49.1

2.2.3 xfsXXXErrorTable

The xfsXXXErrorTable provides access to command response counters supported by a device class. The error

table contains the set of counters for every combination of executable command and associated response that the

Service Provider supports for the managed service. Selection of the required counter is made by specifying the

managed service name, command code and response code through the following parameters

xfsXXXErrorManagedServiceName

xfsXXXErrorCommandCode

xfsXXXErrorResponseCode

The xfsXXXErrorTable is defined as:

 xfsXXXErrorManagedServiceName(1) which provides the primary index to the service in

question. It is a Display String field. The xfsXXXErrorManagedServiceName parameter

corresponds to the value of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceTableEntry.xfsM

anagedServiceName in the general table, e.g. “Printer1”.

 xfsXXXErrorCommandCode(2) is an index which identifies the command code that the response

code relates to, e.g. WFS_CMD_PTR_CONTROL_MEDIA (301). It is a 32 bit numerical field.

 xfsXXXErrorResponseCode(3) is an index which identifies the response code that the count is

required for. It is the absolute value of the error code e.g. WFS_ERR_PTR_NOMEDIAPRESENT

(-302) is represented by 302. It is a 32 bit numerical field.

 xfsXXXErrorCount(4) is the count of the number of times that a particular response code has been

generated while executing a specific command. It is a 32 bit numerical field.

The xfsXXXErrorCount(4) variable is read-write, the other table entries are indices. Issue of a Set command on a

specific counter with value x will result in the individual counter being set to value x.

As an example, the identifier for the error count value for the WFS_ERR_PTR_NOMEDIAPRESENT (-302)

error returned from the WFS_CMD_PTR_CONTROL_MEDIA (301) command for a device with managed

service name equal to “Printer1” is as follows:

xfsMIBRoot.2.1.1.4.1.4.8.80.114.105.110.116.101.114.49.301.302

2.2.4 xfsXXXResetTable

The xfsXXXResetTable provides the means of resetting all counters within the error table and is indexed by a

single variable:

xfsXXXResetManagedServiceName

The xfsXXXResetTable is defined as:

 xfsXXXResetManagedServiceName(1) which provides the index to the service in question. It is a

Display String field. The xfsXXXResetManagedServiceName parameter corresponds to the value

of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceTableEntry.xfsM

anagedServiceName in the general table, e.g. “Printer1”.

CWA 15748-29:2011 (E)

17

 xfsXXXResetAll(2) is a read-write 32 bit numerical variable. Issue of a Set command on the

xfsXXXResetAll variable with value 0 (zero) will result in all counters for the managed service

being reset to value 0 (zero). Any other value will be ignored and the counters will remain

unchanged.

 xfsXXXResetTimestamp(3) is a read-only variable which represents the UTC and bias for local

translation of the date and time when the counters in the error table was reset. It is a Display String

field. The data is formatted in the following way: "DD/MM/YYYY HH:MM:SS +ZZZ” where

DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is the difference, in

minutes, between Co-ordinated Universal Time (UTC) and local time

As an example, all the error counts can be reset for a device with managed service name equal to “Printer1” by

setting the value zero in the xfsPTRResetAll(2) variable represented by:

xfsMIBRoot.2.1.1.5.1.2.8.80.114.105.110.116.101.114.49

2.2.5 xfsXXXResetDeviceTable

The xfsXXXResetDeviceTable(6) is indexed by the single variable, xfsXXXResetDeviceManagedServiceName.

This table contains variables which monitor and control the execution of the reset request.

The xfsXXXResetDeviceAction variable is used to initiate a reset. Setting this variable will cause the following to

happen:

1. The SNMP agent will determine if a Device Reset is allowed by checking the

RemoteDeviceResetAllowed configuration flag (see section 3.1). If it is not allowed then the flow

continues with step 5, otherwise the flow continues with step 2.

2. Exclusive access to the device will be obtained.

3. A WFS_CMD_XXX_RESET command will be issued.

4. Exclusive access to the device will be relinquished when the WFS_CMD_XXX_RESET command

completes.

NOTE Exclusive access must be relinquished as soon as possible and implemented in such a way that

deadlocks are avoided.

5. A xfsXXXResetDeviceCompleteTrap trap will be generated to report the result of the Device Reset

request.

The xfsXXXResetDeviceTable is defined as:

 xfsXXXResetDeviceManagedServiceName(1) which provides the index to the service in question. It is a

Display String field. The xfsXXXResetDeviceManagedServiceName parameter corresponds to the value of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceEntry.xfsManagedServiceN

ame in the general table, e.g. “Printer1”.

 xfsXXXResetDeviceAction(2) is a read-write variable. Issue of a Set command on the

xfsXXXResetDeviceAction variable with value executeReset(1) will result in the device being reset as

described above.

 xfsXXXResetDeviceMediaControl(3) is a read only variable. This variable reports how any media found

within the device is handled. The value of the xfsXXXResetDeviceMediaControl variable is configured

through the ResetDeviceMediaControl configuration setting (see section 3.2). If this value is not configured

then the variable defaults to the value that indicates that the Service Provider is responsible for media

control. The detailed device specific media control information (e.g. PTR bin to retract media to) is

configured through local SNMP Agent configuration.

 xfsXXXResetDeviceStatus(4) is a read only variable This variable can be used to check if a reset operation is

still in progress. It is set when the reset is initiated and cleared when the reset command completes.

As an example, the device with managed service name equal to “Printer1” is reset by setting the

xfsXXXResetDeviceAction variable represented by:

xfsMIBRoot.2.1.1.6.1.2.8.80.114.105.110.116.101.114.49

CWA 15748-29:2011 (E)

18

2.2.6 xfsXXXCapabilitiesTable

The capabilities table provides access to the device capabilities values (as defined in the class specific MIB

documentation) and is indexed through a single parameter, xfsXXXCapabilitiesManagedServiceName. This

information returned in this table is obtained from the CEN XFS WFS_INF_XXX_CAPABILITIES command.

The following capabilities table entries are common to all device classes, the other entries are defined in the

class specific MIB documentation.

 The xfsXXXCapabilitiesManagedServiceName(1): the name of the managed service. It is the

index to the capabilities table and is a Display String field.

The xfsXXXCapabilitiesManagedServiceName parameter corresponds to the value of

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsManagedServiceTable.xfsManagedServiceEntry.xfsManagedServiceName

in the general table, e.g. “Printer1”.

All device capabilities variables are read-only.

As an example, the identifier for the device capabilities value of xfsPTRCapabilitiesReadForm(5) for a device

with managed service name equal to “Printer1” is as follows:

Character P r i n t e r 1

ASCII Hex 50 72 69 6E 74 65 72 31

ASCII Decimal 80 114 105 110 116 101 114 49

NOTE SNMP OID representation of strings consists of a length field specifying the number of characters in

the string followed by the ASCII code in decimal for each character in the string. Therefore the OID of the above

example is:

xfsMIBRoot.2.1.1.7.1.5.8.80.114.105.110.116.101.114.49

2.3 XFS Traps

In order to generate traps, the SNMP agent should register itself for receiving all error condition notifications

from all managed services installed on a system.

Device status changes are reported by the Device Status Change system event and error conditions are reported

by the Hardware and Software Error system events. When the agent receives one of the above events, a trap is

generated. All data associated with the trap is retrieved by the SNMP agent using the managed service name

identified from the above events, while both the related hService and RequestID parameters are not meaningful.

The SNMP XFS agent must use the XFS functions for memory management. In particular, the SNMP XFS

Agent calls the WFSFreeResult function to free the data related to the events described in this chapter. The XFS

functions for memory management are described in the XFS Programmer‟s Reference.

See the Registry configuration section for a detailed description of how the managed services are configured and

how the physical device name is associated with the management data.

The XFS traps are identified with the generic parameter value 6 (standard SNMP) and the specific XFS

parameter value that defines the specific trap managed.

The following specific trap values are defined for XFS traps that are common across all device classes. The

detail for these traps are defined in this document.

 xfsDSCTrap(1)

 xfsErrorTrap (2)

 xfsThreshold(3)

The following specific trap values are defined for XFS traps that are specific to each device class. These traps

are defined in the class specific MIB documentation. There are two classes of device specific Traps, Detailed

Device Status Change Traps and Sub Device Status Change Traps. Specific trap values 101 to 200 are reserved

for Detailed Device Status Change Traps and Specific trap values 201 to 300 are reserved for Sub Device Status

Change Traps.

CWA 15748-29:2011 (E)

19

The following device specific Detailed Device Status Change traps are generated in addition to the generic

Device Status change trap above on version 1.1 of the MIB and above.

 xfsPTRDetailedDSCTrap (101)

 xfsIDCDetailedDSCTrap (102)

 xfsCDMDetailedDSCTrap (103)

 xfsPINDetailedDSCTrap (104)

 xfsCHKDetailedDSCTrap (105)

 xfsDEPDetailedDSCTrap (106)

 xfsTTUDetailedDSCTrap (107)

 xfsSIUDetailedDSCTrap (108)

 xfsVDMDetailedDSCTrap (109)

 xfsCAMDetailedDSCTrap (110)

 xfsALMDetailedDSCTrap (111)

 xfsCEUDetailedDSCTrap (112)

 xfsCIMDetailedDSCTrap (113)

 xfsCRDDetailedDSCTrap (114)

 xfsBCRDetailedDSCTrap (115)

 xfsIPMDetailedDSCTrap (116)

The following Sub Device Status Change Traps are generated on version 1.1 of the MIB and above.

 xfsPTRSubDeviceTrap (201)

 xfsIDCSubDeviceTrap (202)

 xfsCDMSubDeviceTrap (203)

 xfsPINSubDeviceTrap (204)

 xfsCHKSubDeviceTrap (205)

 xfsDEPSubDeviceTrap (206)

 xfsTTUSubDeviceTrap (207)

 xfsSIUSubDeviceTrap (208)

 xfsVDMSubDeviceTrap (209)

 xfsCAMSubDeviceTrap (210)

 xfsALMSubDeviceTrap (211)

 xfsCEUSubDeviceTrap (212)

 xfsCIMSubDeviceTrap (213)

 xfsCRDSubDeviceTrap (214)

 xfsBCRSubDeviceTrap (215)

 xfsIPMSubDeviceTrap (216)

NOTE Only the PTR, CDM, CIM, CRD and IPM currently have sub-devices, the other traps are reserved for

future use.

The following Reset Device Traps are generated on version 1.1 of the MIB and above.

 xfsPTRResetDeviceCompleteTrap (301)

 xfsIDCResetDeviceCompleteTrap (302)

 xfsCDMResetDeviceCompleteTrap (303)

 xfsPINResetDeviceCompleteTrap (304)

 xfsCHKResetDeviceCompleteTrap (305)

 xfsDEPResetDeviceCompleteTrap (306)

 xfsTTUResetDeviceCompleteTrap (307)

 xfsSIUResetDeviceCompleteTrap (308)

 xfsVDMResetDeviceCompleteTrap (309)

 xfsCAMResetDeviceCompleteTrap (310)

 xfsALMResetDeviceCompleteTrap (311)

 xfsCEUResetDeviceCompleteTrap (312)

 xfsCIMResetDeviceCompleteTrap (313)

 xfsCRDResetDeviceCompleteTrap (314)

 xfsBCRResetDeviceCompleteTrap (315)

 xfsIPMResetDeviceCompleteTrap (316)

CWA 15748-29:2011 (E)

20

The Application Management MIB uses the specific trap value of 1000 to report changes in the states of the

applications.

The traps generated within the XFS MIB contain variable bindings which make reference to variables defined

within the XFS MIB. The following picture shows the structure of the sub-tree referenced by the XFS traps.

16213 xfsMIBRoot

3 xfsTrap

1 xfsTrapV1

2 xfsIDC

sub-tree

MIB variable

1 xfsDSCTrapSysName

2 xfsDSCTrapManagedServiceName

3 xfsDSCTrapManagedServiceClass

..

..

1 xfsDSCTrapVars

1 xfsErrorTrapSysName

2 xfsErrorTrapManagedServiceName

3 xfsErrorTrapMangedServiceClass

..

..

2 xfsErrorTrapVars

3 xfsCommonTrapVars

1 xfsCommonTrapManagedServiceName

2 xfsCommonTrapManagedServiceClass

..

4 xfsThresholdTrapVars

1 xfsThresholdTrapThresholdSource

2 xfsThresholdTrapThresholdStatus

..

5 xfsHeartbeatTrapVars

1 xfsHeartbeatTrapMode

..

Inside each trap there is a variable binding list, defined in the following chapters and in the device specific MIB

documentation. The variable binding list contains all the information associated with an alarm to be sent to the

remote server (SNMP Manager). The XFS Agent sets the variables with the values of the corresponding fields

delivered by the system events.

In the above MIB tree, the xfsCommonTrapVars sub-tree contains variables that are common to all new events

added to the MIB specification since version 1.0. The variable binding list within new events reference these

variables for common elements and then reference trap specific variables as required by the trap in question.

2.3.1 Device Status Changes

Status changes of managed services are reported as system events to the XFS Agent. In case of XFS, the

definition of the event data structure can be found in the XFS 3.0 API/SPI Programmer‟s Reference document.

It is only the top level status change within a managed service that is reported through a Device Status Change

Event, i.e. the trap is generated when the fwDevice value in the WFS_INF_XXX_STATUS response has

changed.

The Device Status Change Trap contains a specific variable binding for each element in the trap. The following

section describes the trap variables and trap format.

2.3.1.1 XFS Device Status Change Trap Format

All variables referenced within the Device Status Change Trap are contained within the sub-tree defined by the

following elements.

xfsMIBRoot 16213

xfsTrap 3

CWA 15748-29:2011 (E)

21

xfsTrapV1 1

xfsDSCTrapVars 1

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapSysName (1)

This variable binding contains the system generating the alarm, it is a Display String field. It corresponds to

lpszWorkstationName in the device status change event data from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceName (2)

This variable binding represents the managed service name generating the alarm, it is a Display String field.

The agent derives this field from the device status change event.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceClass (3)

This variable binding represents the XFS service class identifier generating the alarm, it is a 32-bit integer

(INT32). It corresponds to the class identifier for the class name. The class name is identified from the registry

value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass. This ID matches the class OID branch number i.e. PTR=1, IDC=2, CDM=3, etc.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceClassName (4)

This variable binding represents the XFS service class name generating the alarm, it is a Display String field.

It corresponds to the three character representation of the XFS device class name, and it is useful for human

interpretation of a trap. The class name is identified from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceType (5)

This variable binding represents the XFS type identifier generating the alarm, it is a 32-bit integer (INT32). It

corresponds to the type identifier as defined in the WFS_INF_XXX_CAPABILITIES.fwType field, or zero if

device class does not support this field.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceOid (6)

This variable binding represents the OID of the sub-tree within xfsManagedService defining the management

information for this class of managed service. This variable, along with the managed service name as an index,

prevents the need for additional querying to find the service specific MIB branch. The value is provided by the

SNMP agent, e.g. the PTR MIB class is represented by .1.3.6.1.4.1.16213.2.1

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapPhysicalDeviceName (7)

This variable binding represents the physical device name or names associated with the managed service

generating the alarm, it is a Display String field. It corresponds to the physical device name or names

identified by the managed service. The managed service name is used to identify the physical device name or

names, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

PhysicalDeviceName. Multiple physical device names are comma separated. E.g. “ABC Printer Engine, ABC

Transport”.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapDeviceVendor (8)

This variable binding represents the XFS device vendor name of the device generating the alarm, it is a

Display String field. It corresponds to the vendor name for the Service Provider. The Service Provider is

identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the vendor, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\vendor_n

ame.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapMIBVersion (9)

This variable binding represents the XFS MIB version of the device generating the alarm, it is a Display String

field. It corresponds to the XFS MIB version for the managed service. The managed service name is used to

identify the XFS MIB version, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

MibVersion.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapEvent (10)

In case of XFS this variable binding represents the XFS event generating the alarm, it is a 32-bit integer

(INT32). It corresponds to u.dwEventID in the event data from the Service Provider.

CWA 15748-29:2011 (E)

22

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapDate (11)

This variable represents the UTC and bias for local translation of the date and time when the event was

generated. It is a Display String field. The data is formatted in the following way: "DD/MM/YYYY

HH:MM:SS +ZZZ" where DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is

the difference, in minutes, between Co-ordinated Universal Time (UTC) and local time.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapSPVersion (12)

This variable represents the vendor-defined version of the Service Provider generating the alarm, it is a

Display String field. The Service Provider is identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the version, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\version.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceStatus (13)

This variable binding represents the current state of the physical device managed by the service, and

corresponds to dwState in the event data from the Service Provider. It is a 32 bit integer (INT32).

2.3.1.2 XFS Device Status Change Trap: an example

As an example, the following variable binding list represents a device status change trap (6, 1) generated from a

generic XFS SST system to send an alarm to the SNMP Manager for paper finished on the physical device PTR

of type receipt and managed service name “Printer1”.

xfsMIBRoot.3.1.1.1 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapSysName)

 “SST System 1”

xfsMIBRoot.3.1.1.2 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceName)

 “Printer1”

xfsMIBRoot.3.1.1.3 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceClass)

 1 (WFS_SERVICE_CLASS_PTR)

xfsMIBRoot.3.1.1.4 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceClassName)

 “PTR”

xfsMIBRoot.3.1.1.5 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceType)

 1 (WFS_PTR_TYPERECEIPT)

xfsMIBRoot.3.1.1.6 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceOid)

 “.1.3.6.1.4.1.16213.2.1”

xfsMIBRoot.3.1.1.7 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapPhysicalDeviceName)

 “ABC Corp Receipt Printer”

xfsMIBRoot.3.1.1.8 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapDeviceVendor)

 “Best Printers Incorporated”

xfsMIBRoot.3.1.1.9 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapMIBVersion)

 “1.00”

xfsMIBRoot.3.1.1.10 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapEvent)

 4 (WFS_SYSE_DEVICE_STATUS)

xfsMIBRoot.3.1.1.11 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapDate)

 “20/03/2003 15:40:53 -300”

xfsMIBRoot.3.1.1.12 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapSPVersion)

 “1.23”

xfsMIBRoot.3.1.1.13 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsDSCTrapVars.xfsDSCTrapManagedServiceStatus)

 2 (WFS_STAT_DEVOFFLINE)

CWA 15748-29:2011 (E)

23

2.3.2 Hardware and Software Errors

Hardware and software errors are also reported as system events to the XFS Agent. In case of XFS, the

definition of the event data structure can be found in the XFS 3.0 API/SPI Programmer‟s Reference document.

The Error Trap contains a specific variable binding for each element in the trap. The following section describes

the trap variables and trap format.

2.3.2.1 XFS Error Trap Format

All variables referenced within the Error Trap are contained within the sub-tree defined by the following

elements.

xfsMIBRoot 16213

xfsTrap 3

xfsTrapV1 1

xfsErrorTrapVars 2

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSysName (1)

The first variable binding contains the system generating the alarm, it is a Display String field. It corresponds

to lpszWorkstationName in the event data from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceName (2)

This variable binding represents the managed service name generating the alarm, it is Display String field. The

agent derives this field from the error event.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceClass (3)

This variable binding represents the XFS service class identifier generating the alarm, it is a 32-bit integer

(INT32). It corresponds to the class identifier for the class name. The class name is identified from the registry

value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass. This ID matches the class OID branch number i.e. PTR=1, IDC=2, CDM=3, etc.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceClassName (4)

This variable binding represents the XFS service class name generating the alarm, it is a Display String field.

It corresponds to the three character representation of the XFS service class name, and it is useful for human

interpretation of a trap. The class name is identified from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceType (5)

This variable binding represents the XFS type identifier generating the alarm, it is a 32-bit integer (INT32). It

corresponds to the type identifier as defined in the WFS_INF_XXX_CAPABILITIES.fwType field, or zero if

device class does not support this field.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceOid (6)

This variable binding represents the OID of the sub-tree within xfsManagedService defining the management

information for this class of managed service. This variable, along with the managed service name as an index,

prevents the need for additional querying to find the service specific MIB branch. The value is provided by the

SNMP agent, e.g. the PTR MIB class is represented by.1.3.6.1.4.1.16213.2.1.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapPhysicalDeviceName (7)

This variable binding represents the physical device name or names associated with the managed service

generating the alarm, it is a Display String field. It corresponds to the physical device name or names

identified by the managed service. The managed service name is used to identify the physical device name or

names, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

PhysicalDeviceName. Multiple physical device names are comma separated, e.g. “ABC Printer Engine, ABC

Transport”

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDeviceVendor (8)

This variable binding represents the XFS device vendor name of the device generating the alarm, it is a

Display String field. It corresponds to the vendor name for the Service Provider. The Service Provider is

identified from the managed service and the registry value

CWA 15748-29:2011 (E)

24

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the vendor, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\vendor_n

ame.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapMIBVersion (9)

This variable binding represents the XFS MIB version of the device generating the alarm, it is a Display String

field. It corresponds to the XFS MIB version for the managed service. The managed service name is used to

identify the XFS MIB version, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

MibVersion.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapEvent (10)

In case of XFS, this variable binding represents the XFS event generating the alarm, it is a 32-bit integer

(INT32). It corresponds to u.dwEventID in the event data from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDate (11)

This variable represents the UTC and bias for local translation of the date and time when the event was

generated, it is a Display String field. The data is formatted in the following way: "DD/MM/YYYY

HH:MM:SS +ZZZ" where DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is

the difference, in minutes, between Co-ordinated Universal Time (UTC) and local time.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSPVersion (12)

This variable represents the vendor-defined version of the Service Provider generating the alarm, it is a

Display String field. The Service Provider is identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the version, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\version.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSuggestedAction (13)

This variable binding represents the suggested action, and corresponds to dwAction in the event data from the

Service Provider. It is a 32 bit integer (INT32).

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDescrString (14)

This variable binding represents the description associated to the alarm (this description is vendor dependent),

it is a 255 chars length string (OCTET STRING(255)). In case of XFS, it corresponds to lpbDescription in the

event data from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapAppId (15)

This variable binding represents the application ID associated with the session that generated the error event,

and corresponds to lpszAppID in the event data from the Service Provider. It is a Display String field.

2.3.2.2 XFS Error Trap: an example

As an example, the following variable binding list represents an error trap (6, 2) generated from a generic XFS

SST system to send an alarm to the SNMP Manager indicating that the device needs to have the hardware

cleared, a PTR of type receipt and managed service name “Printer1”.

xfsMIBRoot.3.1.2.1 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSysName)

 “SST System 1”

xfsMIBRoot.3.1.2.2 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceName)

 “Printer1”

xfsMIBRoot.3.1.2.3 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceClass)

 1 (WFS_SERVICE_CLASS_PTR)

xfsMIBRoot.3.1.2.4 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceClassName)

 “PTR”

xfsMIBRoot.3.1.2.5 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceType)

 1 (WFS_PTR_TYPERECEIPT)

CWA 15748-29:2011 (E)

25

xfsMIBRoot.3.1.2.6 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapManagedServiceOid)

 “.1.3.6.1.4.1.16213.2.1”

xfsMIBRoot.3.1.2.7 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapPhysicalDeviceName)

 “ReceiptPrinter1”

xfsMIBRoot.3.1.2.8 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDeviceVendor)

 “Best Printers Incorporated”

xfsMIBRoot.3.1.2.9 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapMIBVersion)

 “1.00”

xfsMIBRoot.3.1.2.10 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapEvent)

 2 (WFS_SYSE_HARDWARE_ERROR)

xfsMIBRoot.3.1.2.11 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDate)

 “20/03/2003 15:40:53 -300”

xfsMIBRoot.3.1.2.12 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSPVersion)

 “1.23”

xfsMIBRoot.3.1.2.13 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapSuggestedAction)

 0x0008 (WFS_ERR_ACT_HWCLEAR)

xfsMIBRoot.3.1.2.14 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapDescrString)

 “Clear Transport”

xfsMIBRoot.3.1.2.15 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsErrorTrapVars.xfsErrorTrapAppId)

 “Consumer Application”

2.3.3 Common Trap Variables

All new traps added to the XFS MIB after version 1.0 make reference to the following variables for information

that is common to traps. This prevents the need for multiple definitions for variables that appear in many traps

across many device classes.

The variables common to many traps are contained within the sub-tree defined by the following elements.

xfsMIBRoot 16213

xfsTrap 3

xfsTrapV1 1

xfsCommonTrap 3

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSysName (1)

This variable binding contains the system generating the alarm, it is a Display String field. It corresponds to

lpszWorkstationName in device status change and error events from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceName (2)

This variable binding represents the XFS managed service name generating the alarm, it is a Display String

field. The agent derives this field from the XFS event causing the trap.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClass (3)

This variable binding represents the XFS service class identifier generating the alarm, it is a 32-bit integer

(INT32). It corresponds to the class identifier for the class name. The class name is identified from the registry

value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass. This ID matches the class OID branch number, i.e. PTR=1, IDC=2, CDM=3, etc.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClassName (4)

This variable binding represents the XFS service class name generating the alarm, it is a Display String field.

It corresponds to the three character representation of the XFS device class name, and it is useful for human

interpretation of a trap. The class name is identified from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass.

CWA 15748-29:2011 (E)

26

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceType (5)

This variable binding represents the XFS type identifier generating the alarm, it is a 32-bit integer (INT32). It

corresponds to the type identifier as defined in the WFS_INF_XXX_CAPABILITIES.fwType field, or zero if

device class does not support this field.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceOid (6)

This variable binding represents the OID of the sub-tree within xfsManagedService defining the management

information for this class of managed service. This variable, along with the managed service name as an index,

prevents the need for additional querying to find the service specific MIB branch. The value is provided by the

SNMP agent, e.g. the PTR MIB class is represented by .1.3.6.1.4.1.16213.2.1

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapPhysicalDeviceName (7)

This variable binding represents the physical device name or names associated with the managed service

generating the alarm, it is a Display String field. It corresponds to the physical device name or names

identified by the managed service. The managed service name is used to identify the physical device name or

names, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

PhysicalDeviceName. Multiple physical device names are comma separated, e.g. “ABC Printer Engine, ABC

Transport”.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDeviceVendor (8)

This variable binding represents the XFS device vendor name of the device generating the alarm, it is a

Display String field. It corresponds to the vendor name for the Service Provider. The Service Provider is

identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the vendor, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\vendor_n

ame.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapMIBVersion (9)

This variable binding represents the XFS MIB version of the device generating the alarm, it is a Display String

field. It corresponds to the XFS MIB version for the managed service. The managed service name is used to

identify the XFS MIB version, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

MibVersion.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapEvent (10)

In case of XFS this variable binding represents the XFS threshold event generating the alarm, it is a 32-bit

integer (INT32). It corresponds to the message identifier associated with the XFS event causing the trap.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDate (11)

This variable represents the UTC and bias for local translation of the date and time when the event was

generated. It is a Display String field. The data is formatted in the following way: "DD/MM/YYYY

HH:MM:SS +ZZZ" where DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is

the difference, in minutes, between Co-ordinated Universal Time (UTC) and local time.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSPVersion (12)

This variable represents the vendor-defined version of the Service Provider generating the alarm, it is a

Display String field. The Service Provider is identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the version, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\version.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapResetRequestResult (13)

This variable binding contains a value indicating if the device reset was executed, and if not provides a reason.

It does not report the status of the device. The possible values are:

 zero the reset was executed successfully (however the device may not be operational, see the

device status fields).

 one the reset was rejected because exclusive access could not be obtained

 two the reset was rejected because Device Resets are disabled on this terminal (see Section 3.1)

 negative the reset request was executed but failed and the value corresponds to the XFS error code

CWA 15748-29:2011 (E)

27

2.3.4 Threshold Status Changes

This trap is generated when a device threshold event occurs (WFS_USRE_XXX_THRESHOLD). The trap

uniquely identifies the underlying threshold event via the following fields

xfsEvent – describes the underlying XFS threshold event that has occurred.

xfsThresholdSource – Describes the source component of the device (as described in the associated

Threshold event) that this change of state is associated with when a threshold can be

generated from multiple sources within a device. For example, the PTR supports

threshold values with multiple sources, i.e. a threshold for one of a number of retract

bin numbers or one of a number of paper sources. In this case, this field will contain a

value that represents the specific source of the event. It corresponds to the source field

within the threshold event identified by the xfsEvent above. A value of zero indicates

that the event data did not include this detail.

On the CDM and CIM device classes this field corresponds to the sub-device index

for the cash unit that has generated the event.

xfsThresholdStatus – The new value of the threshold as described in the Threshold event

2.3.4.1 XFS Threshold Specific Variables

Variables that are specific to the Threshold trap are contained within the sub-tree defined by the following

elements.

xfsMIBRoot 16213

xfsTrap 3

xfsTrapV1 1

xfsThresholdTrap 4

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdSource (1)

This variable binding represents the specific source of the threshold event when a specific threshold can be

generated from multiple sources within a device. For example, the PTR supports threshold values with

multiple sources, i.e. a threshold for one of a number of retract bin numbers or one of a number of paper

sources. In this case, this field will contain a value that represents the specific source of the event. It

corresponds to the source field within the threshold event identified by the xfsEvent above.

On the CDM and CIM device classes this field corresponds to the sub-device index for the cash unit that has

generated the event.

However, most device thresholds have a single source within a device, and in this case this value will always

report 0. It is a 32 bit integer (INT32).

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdStatus (2)

This variable binding represents the current threshold state within the device managed by the service, and

corresponds to threshold value in the event data from the Service Provider. It is a 32 bit integer (INT32).

2.3.4.2 XFS Threshold Trap Format

The following are the variable bindings contained within the XFS Threshold Trap.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceName (1)

This variable binding represents the XFS managed service name generating the alarm, it is a Display String

field. The agent derives this field from the threshold event.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClass (2)

This variable binding represents the XFS service class identifier generating the alarm, it is a 32-bit integer

(INT32). It corresponds to the class identifier for the class name. The class name is identified from the registry

value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass. This ID matches the class OID branch number, i.e. PTR=1, IDC=2, CDM=3, etc.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClassName (3)

This variable binding represents the XFS service class name generating the alarm, it is a Display String field.

It corresponds to the three character representation of the XFS device class name, and it is useful for human

interpretation of a trap. The class name is identified from the registry value

CWA 15748-29:2011 (E)

28

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\c

lass.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceType (4)

This variable binding represents the XFS type identifier generating the alarm, it is a 32-bit integer (INT32). It

corresponds to the type identifier as defined in the WFS_INF_XXX_CAPABILITIES.fwType field, or zero if

device class does not support this field.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceOid (5)

This variable binding represents the OID of the sub-tree within xfsManagedService defining the management

information for this class of managed service. This variable, along with the managed service name as an index,

prevents the need for additional querying to find the service specific MIB branch. The value is provided by the

SNMP agent, e.g. the PTR MIB class is represented by .1.3.6.1.4.1.16213.2.1

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapPhysicalDeviceName (6)

This variable binding represents the physical device name or names associated with the managed service

generating the alarm, it is a Display String field. It corresponds to the physical device name or names

identified by the managed service. The managed service name is used to identify the physical device name or

names, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

PhysicalDeviceName. Multiple physical device names are comma separated, e.g. “ABC Printer Engine, ABC

Transport”.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDeviceVendor (7)

This variable binding represents the XFS device vendor name of the device generating the alarm, it is a

Display String field. It corresponds to the vendor name for the Service Provider. The Service Provider is

identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the vendor, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\vendor_n

ame.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapMIBVersion (8)

This variable binding represents the XFS MIB version of the device generating the alarm, it is a Display String

field. It corresponds to the XFS MIB version for the managed service. The managed service name is used to

identify the XFS MIB version, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

MibVersion.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapEvent (9)

In case of XFS this variable binding represents the XFS threshold event generating the alarm, it is a 32-bit

integer (INT32). It corresponds to the message identifier associated with the device User event generated by

the Service Provider for this threshold change.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDate (10)

This variable represents the UTC and bias for local translation of the date and time when the event was

generated. It is a Display String field. The data is formatted in the following way: "DD/MM/YYYY

HH:MM:SS +ZZZ" where DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is

the difference, in minutes, between Co-ordinated Universal Time (UTC) and local time.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSPVersion (11)

This variable represents the vendor-defined version of the Service Provider generating the alarm, it is a

Display String field. The Service Provider is identified from the managed service name and the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

ServiceProvider.

The Service Provider name is then used to identify the version, from the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\SERVICE_PROVIDERS\<ServiceProviderName>\version.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdSource (12)

This variable binding represents the specific source of the threshold event when a specific threshold can be

generated from multiple sources within a device. For example, the PTR supports threshold values with

multiple sources, i.e. a threshold for one of a number of retract bin numbers or one of a number of paper

sources. In this case, this field will contain a value that represents the specific source of the event. It

corresponds to the source field within the threshold event identified by the xfsEvent above.

CWA 15748-29:2011 (E)

29

On the CDM and CIM device classes this field corresponds to the sub-device index for the cash unit that has

generated the event.

However, most device thresholds have a single source within a device, and in this case this value will always

report 0. It is a 32 bit integer (INT32).

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdStatus (13)

This variable binding represents the current threshold state within the device managed by the service, and

corresponds to threshold value in the event data from the Service Provider. It is a 32 bit integer (INT32).

2.3.4.3 XFS Threshold Trap: an example

As an example, the following variable binding list represents a threshold trap (6,3) generated from a generic XFS

SST system to send an alarm to the SNMP Manager indicating that the device needs to have the hardware

cleared, a PTR of type receipt and managed service name “Printer1”.

xfsMIBRoot.3.1.3.2 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceName)

 “Printer1”

xfsMIBRoot.3.1.3.3 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClass)

 1 (WFS_SERVICE_CLASS_PTR)

xfsMIBRoot.3.1.3.4 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceClassName)

 “PTR”

xfsMIBRoot.3.1.3.5 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceType)

 1 (WFS_PTR_TYPERECEIPT)

xfsMIBRoot.3.1.3.6 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapManagedServiceOid)

 “.1.3.6.1.4.1.16213.2.1”

xfsMIBRoot.3.1.3.7 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapPhysicalDeviceName)

 “ReceiptPrinter1”

xfsMIBRoot.3.1.3.8 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDeviceVendor)

 “Best Printers Incorporated”

xfsMIBRoot.3.1.3.9 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapMIBVersion)

 “1.10”

xfsMIBRoot.3.1.3.10 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapEvent)

 107 (WFS_USRE_PTR_PAPERTHRESHOLD)

xfsMIBRoot.3.1.3.11 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDate)

 “20/03/2003 15:40:53 -300”

xfsMIBRoot.3.1.3.12 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSPVersion)

 “1.23”

xfsMIBRoot.3.1.4.1 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdSource)

 2 (WFS_PTR_PAPERUPPER)

xfsMIBRoot.3.1.4.2 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsThresholdTrapVars.xfsThresholdTrapThresholdStatus)

 1 (WFS_PTR_PAPERLOW)

2.3.5 Agent heartbeat notification

This notification will aid the monitoring of the XFS SNMP Agent and can help to determine the following:

 Whether device faults occurred but were not reported due to communication issues between the XFS

SNMP Agent and the monitoring system

 There were no communication issues and no device faults had occurred.

CWA 15748-29:2011 (E)

30

 On instances where the application above the XFS layer does not implement an application SNMP

Agent heartbeat trap to address this disjoint, this trap from the XFS SNMP Agent will do so.

The heartbeat interval is configurable and is represented by

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsAgentHeartbeatInterval. It is a read-write integer32 variable indicating

the number of minutes for the interval. A zero (0) value will disable the heartbeat notification.

2.3.5.1 Agent heartbeat specific variables

The following variables are used by the XFS SNMP Agent heartbeat notification trap and are contained within

the sub-tree defined by the following elements and specific variables.

xfsMIBRoot 16213

xfsTrap 3

xfsTrapV1 1

xfsHeartbeatTrapVars 5

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsHeartbeatTrapVars.xfsHeartbeatTrapMode (1)

This variable binding contains the system state for the Vendor Dependent Mode in integer format. This state

provides indication as to whether device states or traps are to be expected. Possible values are:

Value Meaning

xfsVDMEnterPending(1) Vendor Dependent Mode enter request pending.

xfsVDMActive(2) Vendor Dependent Mode active.

xfsVDMExitPending(3) Vendor Dependent Mode exit request pending.

xfsVDMInactive(4) Vendor Dependent Mode inactive.

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsAgentHeartbeatInterval (2)

This variable binding contains the heartbeat interval in integer32 format. The interval provides an indication

as to when the next heartbeat trap should be expected. The value is the number of minutes.

2.3.5.2 Agent heartbeat trap format

The following are variable bindings for XFS Agent heartbeat trap (6:4).

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSysName (1)

This variable binding contains the system generating the trap; it is a Display String field. It corresponds to

lpszWorkstationName in the device status change event data from the Service Provider.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapMIBVersion (2)

This variable binding represents the XFS MIB version, and it is a Display String field. It corresponds to the

XFS MIB version for the managed service. The managed service name is used to identify the XFS MIB

version, from registry value

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS\<ManagedServiceName>\

MibVersion.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDate (3)

This variable represents the UTC and bias for local translation of the date and time when the event was

generated. It is a Display String field. The data is formatted in the following way: "DD/MM/YYYY HH:MM:SS

+ZZZ" where DD/MM/YYYY HH:MM:SS is the local date and time. ZZZ is the bias, which is the difference, in

minutes, between Co-ordinated Universal Time (UTC) and local time.

xfsMIBRoot.xfsTrap.xfsTrapV1.xfsHeartbeatTrapVars.xfsHeartbeatTrapMode (4)

This variable binding contains the system state for the vendor dependent mode in integer format. This state

provides indication as to whether device states or traps are to be expected. Possible values are:

Value Meaning

xfsVDMEnterPending(1) Vendor Dependent Mode enter request pending.

xfsVDMActive(2) Vendor Dependent Mode active.

xfsVDMExitPending(3) Vendor Dependent Mode exit request pending.

xfsVDMInactive(4) Vendor Dependent Mode inactive.

xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsAgentHeartbeatInterval (5)

CWA 15748-29:2011 (E)

31

This variable binding contains the configurable heartbeat interval as a read-write integer32 variable. The

interval provides an indication as to when the next heartbeat trap should be expected. The value is the number

of minutes.

2.3.5.3 Agent heartbeat trap: an example

As an example, the following variable binding list represents an Agent heartbeat trap, configured with an interval

of 5 minutes while the system had Vendor Dependent Mode inactive.

xfsMIBRoot.3.1.3.1 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapSysName)

 “SST System 1”

xfsMIBRoot.3.1.3.9 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapMIBVersion)

 “1.20”

xfsMIBRoot.3.1.3.11 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsCommonTrapVars.xfsCommonTrapDate)

 “15/05/2007 15:40:53 -300”

xfsMIBRoot.3.1.5.1 (xfsMIBRoot.xfsTrap.xfsTrapV1.xfsHeartbeatTrapVars.xfsHeartbeatTrapMode)

 4

xfsMIBRoot.1.1.6 (xfsMIBRoot.xfsGeneral.xfsMIBV1.xfsAgentHeartbeatInterval)
 5

CWA 15748-29:2011 (E)

32

3. XFS Registry Configuration

A network management application uses configuration information to define the relationship between the

managed services, physical devices and the parts of the management data that have to be provided to the remote

SNMP Manager. In particular, this information defines the data included in the General sub-tree of XFS MIB

tree (See section 2.1 General Information).

The configuration information defines the managed services and includes specific information about the

managed service and the physical devices, e.g. the physical device name.

The configuration information for an XFS subsystem is stored in the XFS configuration registry. The

HKEY_LOCAL_MACHINE\SOFTWARE\XFS\MANAGEMENT_PROVIDERS key is the root key for all the

XFS management configuration. Under this key are specific configuration values common to the XFS

management system (i.e. not related to a specific managed service) and a key for each managed service.

3.1 XFS Common Management Configuration

The values defined within the root configuration key contain configuration information that applies to the overall

XFS Management system or is common across all managed services. The following values are defined.

 RemoteDeviceResetAllowed a flag indicating if all applications are able to co-operate with

the SNMP Agent to control exclusive access to devices. If the

value is „0‟ then the Device Reset is not allowed. If the value is

„1‟ then Device Reset is allowed. If the value is not present or

has any other value then Device Reset is not allowed.

The management provider configuration information for an example XFS system is shown below, where Device

Reset is allowed and exclusive access to the device can be negotiated between the application and the SNMP

agent.

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS
 Second Level Keys
 Third Level Keys (or values)
 Values

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS

 MANAGEMENT_PROVIDERS

 RemoteDeviceResetAllowed = ‘1’

3.2 Managed Services Configuration

There is one managed service for every logical interface offered by a physical device. For example on a recycler

with a CIM and CDM interface there would be 2 entries in the registry, one for each interface. Managed services

are used as the primary MIB key instead of logical services, as logical services can be defined by applications

and would lead to duplicate data in the MIB.

Typically, the MANAGEMENT_PROVIDERS section of the registry will be defined by the vendor of the

Service Provider, although a management solution provider can define their own entries if necessary. The sub-

keys of the MANAGEMENT_PROVIDERS area of the registry will often reflect the SERVICE_PROVIDERS

area, with one managed service key for each Service Provider key.

Each key name is unique for the workstation and identifies the name of the managed service. It has the following

mandatory values:

MibVersion The MIB class version supported by the managed service.

Class The service class of the managed interface (see the Service Class

Definition Document for the standard values).

CWA 15748-29:2011 (E)

33

ServiceProvider The name of the Service Provider that provides the implementation

of the standard XFS functionality for a logical interface (the key

name of the corresponding Service Provider key).

PhysicalDeviceName The name or names of the physical devices. Multiple devices are

comma separated.

OID Object identifier of the device class managed.

ResetDeviceMediaControl Defines what happens to media when a device reset is issued and

specifies the value reported in the xfsXXXResetDeviceMediaControl

variable. For the set of valid values for each device class refer to the

enumerated type defined for the xfsXXXResetDeviceMediaControl

variable in each device class.

The management provider configuration information for an example XFS system is shown below.

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS
 Second Level Keys
 Third Level Keys (or values)
 Values

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS

 XFS_MANAGER

 LOGICAL_SERVICES

 <LogicalServiceName>
 class
 provider

 <LogicalServiceName>

 SERVICE_PROVIDERS

 <ServiceProviderName>
 DllName
 vendor_name
 version

 <ServiceProviderName>

 MANAGEMENT_PROVIDERS

 <ManagedServiceName>

 MibVersion
 Class
 ServiceProvider
 PhysicalDeviceName
 OID
 ResetDeviceMediaControl

 <ManagedServiceName>

CWA 15748-29:2011 (E)

34

The example below shows a possible registry configuration for a Card Reader that has a single device class

interface:

 HKEY_USERS\DEFAULT\XFS
 Second Level Keys
 Third Level Keys (or values)
 Values

 LOGICAL_SERVICES

 <CardReader1>
 class = “IDC”
 provider = “IBM1234”

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS
 Second Level Keys
 Third Level Keys (or values)
 Values

 HKEY_LOCAL_MACHINE\SOFTWARE\XFS

 XFS_MANAGER
 TraceFile = “C:\XFSTRACE.LOG”

 SERVICE_PROVIDERS

 <IBM1234>
 DllName = “IBM1234.dll”
 vendor_name = “XFS Solutions Provider”
 version = “1.0.1”

 MANAGEMENT_PROVIDERS

 <ManagedIBM1234>

 MibVersion = “1.0.0”
 Class = “IDC”
 ServiceProvider = “IBM1234”
 PhysicalDeviceName = “IBMUSBDIP”
 OID = “.1.3.6.1.4.1.16213.2.2”
 ResetDeviceMediaControl = “2”

CWA 15748-29:2011 (E)

35

4. XFS Service Provider Interface Management Extensions

Most of the information that is instrumented through the XFS MIB is already available through the existing XFS

Device Class interfaces, primarily through the WFS_INF_XXX_STATUS and

WFS_INF_XXX_CAPABILITIES commands, where XXX represents the device class. However, some of the

required data is not provided by the existing XFS interfaces. This section defines changes to existing Information

commands and additional Information commands that must be implemented by a Service Provider to allow

reporting of the full XFS MIB data.

The new XFS MIB commands are all specified as Information commands executed by WFSGetInfo and

WFSAsyncGetInfo. They are specified as Information commands so that they can be executed immediately, will

not be queued and will not be affected by locks.

4.1 WFS_INF_XXX_CAPABILITIES

The Capabilities command is used to report the device capability information. The XFS MIB adds the following

additional information to the lpszExtra field to report that the Service Provider supports the management

commands.

lpszExtra

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of

“key=value” strings so that it is easily extendable by Service Providers. Each string is null-terminated, the whole

list terminated with an additional null character. An empty list may be indicated by either a NULL pointer or a

pointer to two consecutive null characters.

For the Service Providers that report all of the XFS MIB data, this parameter will contain the following:

XFS_MIB_VERSION=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a hexadecimal value.

XFS_MIB_VERSION identifies the highest version of the MIB specification that the Service Provider supports.

The low-order word contains the version number, while the high-order word must be set to zero. In the low-order

word, the low-order byte specifies the major version number and the high-order byte specifies the minor version

number. Note: in order to allow intermediate minor revisions (e.g. between 1.10 and 1.20), the minor version

number should always be expressed as two decimal digits, i.e. 1.10, 1.11, 1.20, etc. As an example MIB version

1.0 is represented as “XFS_MIB_VERSION=<0x00000001>

4.2 WFS_INF_MIB_GET_RESPONSE_COUNTS

Description This command reports the response counts for the Service Provider. The Service Provider

must maintain these response counts persistently across re-boots.

This command can either be used to return a single response count for a specified command

and response code, or return response counts for all valid command codes and response codes.

When multiple command code/response codes are reported, only valid response codes for the

associated command code can be returned in the output parameter. Valid is defined as those

response codes specified for a particular command code within the relevant XFS device class

interface specification and the generic response codes defined below.

In addition to the device class specific response codes the following generic response codes

can be requested and reported:

 WFS_SUCCESS

 WFS_ERR_HARDWARE_ERROR

 WFS_ERR_SOFTWARE_ERROR

 WFS_ERR_OUT_OF_MEMORY

 WFS_ERR_TIMEOUT

 WFS_ERR_UNSUPP_COMMAND

 WFS_ERR_UNSUPP_DATA

Input Param LPWFSMIBRESPONSECOUNT lpGetResponseCount

typedef struct _wfs_mib_response_count

 {

CWA 15748-29:2011 (E)

36

 DWORD dwCommandCode;

 LONG lResponseCode;

 DWORD dwResponseCount;

 } WFSMIBRESPONSECOUNT, * LPWFSMIBRESPONSECOUNT;

 dwCommandCode

Specifies the command code for which the response count is required. This value is a

command code as defined in the XFS device class interface specification. If this value is zero,

data for all command codes and all response codes is returned, in this case lResponseCode is

ignored.

lResponseCode

Specifies the specific response code associated with dwCommandCode for which the count is

required. This value is an XFS response code value as defined in the XFS device class

interface specification, or one of the generic response codes listed above.

dwResponseCount

This parameter is ignored as an input parameter by this command.

If lpGetResponseCount is NULL then information on all command codes and response codes

is returned in the output parameter.

Output Param LPWFSMIBRESPONSECOUNT * lpGetResponseCount;

lpGetResponseCount

Pointer to a null-terminated array of pointers to response code count structures:

typedef struct _wfs_mib_response_count

 {

 DWORD dwCommandCode;

 LONG lResponseCode;

 DWORD dwResponseCount;

 } WFSMIBRESPONSECOUNT, * LPWFSMIBRESPONSECOUNT;

dwCommandCode

Specifies the command code to which the response count applies. This value is a command

code as defined in the XFS device class interface specification.

lResponseCode

Specifies the response code to which the count applies. This value is an XFS response code

value as defined in the XFS device class interface specification, or one of the generic response

codes listed above.

dwResponseCount

The count of the number of times that the specified response code was returned for the

specified command code since all the counts were reset.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. In

particular:

Value Meaning

WFS_ERR_INVALID_DATA The input parameters dwCommandCode or

lResponseCode are outside the specified range

for the Service Provider.

 WFS_ERR_UNSUPP_DATA The input parameters are valid but the

requested count is not maintained by the

Service Provider

WFS_ERR_UNSUPP_CATEGORY The command is not supported although the

Service Provider recognises the command.

WFS_ERR_INVALID_CATEGORY The command is not supported and the

Service Provider does not recognise the

command.

Comments None.

CWA 15748-29:2011 (E)

37

4.3 WFS_INF_MIB_SET_RESPONSE_COUNT

Description This command sets a single response count for the Service Provider. The response counts are

persistent.

Input Param LPWFSMIBRESPONSECOUNT lpSetResponseCount

typedef struct _wfs_mib_response_count

 {

 DWORD dwCommandCode;

 LONG lResponseCode;

 DWORD dwResponseCount;

 } WFSMIBRESPONSECOUNT, * LPWFSMIBRESPONSECOUNT;

 dwCommandCode

Specifies the command code for which the response count is to be set. This value is a

command code as defined in the XFS device class interface specification.

lResponseCode

Specifies the response code for which the count is to be set. This value is an XFS error code

value as defined in the XFS device class interface specification, or one of the generic response

codes listed in the WFS_INF_MIB_GET_RESPONSE_COUNTS command description.

dwResponseCount

Value to set the response count to.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. In

particular:

Value Meaning

WFS_ERR_INVALID_DATA The input parameters dwCommandCode or

lResponseCode are outside the specified range

for the Service Provider.

 WFS_ERR_UNSUPP_DATA The input parameters are valid but the

requested count is not maintained by the

Service Provider

WFS_ERR_UNSUPP_CATEGORY The command is not supported although the

Service Provider recognises the command.

WFS_ERR_INVALID_CATEGORY The command is not supported and the

Service Provider does not recognise the

command.

Comments None.

4.4 WFS_INF_MIB_RESET_RESPONSE_COUNTS

Description This command retrieves the timestamp when the response counts were reset and allows the

response counts to be reset to zero.

Input Param LPBOOL lpResetResponseCounts

 lpResetResponseCounts

Specifies if the response counts should be reset. If lpResetResponseCounts is TRUE then the

all response counts are reset to zero and the timestamp of this reset is reported. If

lpResetResponseCounts is FALSE then the counts are not reset but the timestamp of the last

reset is reported.

Output Param LPWFSMIBRESETRESPONSECOUNTS lpResetResponseCounts

CWA 15748-29:2011 (E)

38

typedef struct _wfs_mib_reset_response_counts

 {

 SYSTEMTIME tsTimestamp;

 } WFSMIBRESETRESPONSECOUNTS, * LPWFSMIBRESETRESPONSECOUNTS;

 tsTimestamp

 Time the reset occurred (local time, in a Win32 SYSTEMTIME structure)

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command. In

particular:

Value Meaning

WFS_ERR_UNSUPP_CATEGORY The command is not supported although the

Service Provider recognises the command.

WFS_ERR_INVALID_CATEGORY The command is not supported and the

Service Provider does not recognise the

command.

Comments None.

CWA 15748-29:2011 (E)

39

5. Appendix A - General MIB sub-tree

In the following paragraph there is a sample of the XFS General MIB sub-tree in SMIv2 and SMIv1 format. For

simplicity it is supposed that the XFS MIB is under the enterprise tree with identification number 16213.

5.1 General MIB and Trap MIB in SMIv2 and SMIv1 format

The following text is the content of xfsGeneralMIB.MIB file in SMIv2 format

--

**

-- XFS GENERAL MIB

-- Management Information Base for XFS

--

-- The XFS number is 16213

-- The ASN.1 prefix to, and including the XFS is: .1.3.6.1.4.1.16213

--

-- **

 XFSMIB DEFINITIONS ::= BEGIN

 IMPORTS

 enterprises, Integer32, OBJECT-TYPE, OBJECT-IDENTITY, NOTIFICATION-TYPE

 FROM SNMPv2-SMI

 DisplayString

 FROM SNMPv2-TC;

--

-- Type definitions

--

-- **

-- General #defines

-- **

 IxfsMIBDeviceStatus ::= INTEGER

 {

 xfsDevOnline(1),

 xfsDevOffline(2),

 xfsDevPowerOff(3),

 xfsDevNoDevice(4),

 xfsDevHWError(5),

 xfsDevUserError(6),

 xfsDevBusy(7),

 xfsDevFraudAttempt(8)

 }

--

-- Node definitions

--

 -- 1.3.6.1.4.1.16213

 xfsMIBRoot OBJECT IDENTIFIER ::= { enterprises 16213 }

 -- 1.3.6.1.4.1.16213.1

 xfsGeneral OBJECT IDENTIFIER ::= { xfsMIBRoot 1 }

--

**

--

-- The XFS (1.3.6.1.4.1.16213)

-- General Group (1.3.6.1.4.1.16213.1)

--

-- Implementation of the general group is mandatory for all agents

-- supporting the XFS MIB.

--

CWA 15748-29:2011 (E)

40

-- **

 -- 1.3.6.1.4.1.16213.1.1

 xfsMIBV1 OBJECT IDENTIFIER ::= { xfsGeneral 1 }

 -- 1.3.6.1.4.1.16213.1.1.1

 xfsMIBRelease OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The XFS MIB release supported by the agent."

 ::= { xfsMIBV1 1 }

 -- 1.3.6.1.4.1.16213.1.1.2

 xfsXFSRelease OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The XFS documentation release that the MIB corresponds to."

 ::= { xfsMIBV1 2 }

 -- 1.3.6.1.4.1.16213.1.1.3

 xfsJXFSRelease OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The J/XFS documentation release that the MIB corresponds to."

 ::= { xfsMIBV1 3 }

 -- 1.3.6.1.4.1.16213.1.1.4

 xfsManagedServices OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of managed services present."

 ::= { xfsMIBV1 4 }

 -- 1.3.6.1.4.1.16213.1.1.5

 xfsManagedServiceTable OBJECT-TYPE

 SYNTAX SEQUENCE OF XfsManagedServiceEntry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "Table of the managed services installed on the system."

 ::= { xfsMIBV1 5 }

 -- 1.3.6.1.4.1.16213.1.1.5.1

 xfsManagedServiceEntry OBJECT-TYPE

 SYNTAX XfsManagedServiceEntry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The managed service table entry."

 INDEX { xfsManagedServiceName }

 ::= { xfsManagedServiceTable 1 }

 XfsManagedServiceEntry ::=

 SEQUENCE {

 xfsManagedServiceName

 DisplayString,

 xfsManagedServiceClass

 Integer32,

 xfsManagedServiceType

 Integer32,

 xfsManagedServiceOID

CWA 15748-29:2011 (E)

41

 DisplayString,

 xfsManagedServicePhysicalDeviceName

 DisplayString,

 xfsManagedServiceVendor

 DisplayString,

 xfsManagedServiceMIBClassRelease

 Integer32,

 xfsManagedServiceInstance

 Integer32

 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.1

 xfsManagedServiceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The name of the managed service."

 ::= { xfsManagedServiceEntry 1 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.2

 xfsManagedServiceClass OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The identifier of the XFS service class for the managed service."

 ::= { xfsManagedServiceEntry 2 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.3

 xfsManagedServiceType OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The type identifier of the XFS service class for the managed

 service."

 ::= { xfsManagedServiceEntry 3 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.4

 xfsManagedServiceOID OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The OID of the sub-tree defining the management information for

 this class of managed service."

 ::= { xfsManagedServiceEntry 4 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.5

 xfsManagedServicePhysicalDeviceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The name of the physical device or devices associated with this

 managed service. If there is more than one device, the names are

 comma-separated."

 ::= { xfsManagedServiceEntry 5 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.6

 xfsManagedServiceVendor OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The name of the Service Provider vendor."

 ::= { xfsManagedServiceEntry 6 }

CWA 15748-29:2011 (E)

42

 -- 1.3.6.1.4.1.16213.1.1.5.1.7

 xfsManagedServiceMIBClassRelease OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The XFS MIB class release supported by Service Provider."

 ::= { xfsManagedServiceEntry 7 }

 -- 1.3.6.1.4.1.16213.1.1.5.1.8

 xfsManagedServiceInstance OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "An arbitrary identifier for the managed service, assigned by the

 agent."

 ::= { xfsManagedServiceEntry 8 }

 -- 1.3.6.1.4.1.16213.1.1.6

 xfsAgentHeartbeatInterval OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS read-write

 STATUS current

 DESCRIPTION

 "The interval of the XFS Agent heartbeat notification."

 ::= { xfsMIBV1 6 }

 -- 1.3.6.1.4.1.16213.2

 xfsManagedService OBJECT IDENTIFIER ::= { xfsMIBRoot 2 }

--

*

--

-- The XFS (1.3.6.1.4.1.16213)

-- Managed Service (1.3.6.1.4.1.16213.2)

--

-- Implementation of the managed service is mandatory for all agents

-- supporting the XFS MIB.

--

--

*

 -- 1.3.6.1.4.1.16213.2.1

 xfsPTR OBJECT IDENTIFIER ::= { xfsManagedService 1 }

 -- 1.3.6.1.4.1.16213.2.2

 xfsIDC OBJECT IDENTIFIER ::= { xfsManagedService 2 }

 -- 1.3.6.1.4.1.16213.2.3

 xfsCDM OBJECT IDENTIFIER ::= { xfsManagedService 3 }

 -- 1.3.6.1.4.1.16213.2.4

 xfsPIN OBJECT IDENTIFIER ::= { xfsManagedService 4 }

 -- 1.3.6.1.4.1.16213.2.5

 xfsCHK OBJECT IDENTIFIER ::= { xfsManagedService 5 }

 -- 1.3.6.1.4.1.16213.2.6

 xfsDEP OBJECT IDENTIFIER ::= { xfsManagedService 6 }

 -- 1.3.6.1.4.1.16213.2.7

 xfsTTU OBJECT IDENTIFIER ::= { xfsManagedService 7 }

CWA 15748-29:2011 (E)

43

 -- 1.3.6.1.4.1.16213.2.8

 xfsSIU OBJECT IDENTIFIER ::= { xfsManagedService 8 }

 -- 1.3.6.1.4.1.16213.2.9

 xfsVDM OBJECT IDENTIFIER ::= { xfsManagedService 9 }

 -- 1.3.6.1.4.1.16213.2.10

 xfsCAM OBJECT IDENTIFIER ::= { xfsManagedService 10 }

 -- 1.3.6.1.4.1.16213.2.11

 xfsALM OBJECT IDENTIFIER ::= { xfsManagedService 11 }

 -- 1.3.6.1.4.1.16213.2.12

 xfsCEU OBJECT IDENTIFIER ::= { xfsManagedService 12 }

 -- 1.3.6.1.4.1.16213.2.13

 xfsCIM OBJECT IDENTIFIER ::= { xfsManagedService 13 }

 -- 1.3.6.1.4.1.16213.2.14

 xfsCRD OBJECT IDENTIFIER ::= { xfsManagedService 14 }

 -- 1.3.6.1.4.1.16213.2.15

 xfsBCR OBJECT IDENTIFIER ::= { xfsManagedService 15 }

 -- 1.3.6.1.4.1.16213.2.16

 xfsIPM OBJECT IDENTIFIER ::= { xfsManagedService 16 }

 -- 1.3.6.1.4.1.16213.3

 xfsTrap OBJECT IDENTIFIER ::= { xfsMIBRoot 3 }

 -- 1.3.6.1.4.1.16213.3.0

 xfsTrapV2 OBJECT-IDENTITY

 STATUS current

 DESCRIPTION

 "Root node for the converted TRAP-TYPEs."

 ::= { xfsTrap 0 }

-- Trap definitions

--

 -- 1.3.6.1.4.1.16213.3.0.1

 xfsDSCTrap NOTIFICATION-TYPE

 OBJECTS { xfsDSCTrapSysName, xfsDSCTrapManagedServiceName,

xfsDSCTrapManagedServiceClass, xfsDSCTrapManagedServiceClassName,

xfsDSCTrapManagedServiceType,

 xfsDSCTrapManagedServiceOid, xfsDSCTrapPhysicalDeviceName,

xfsDSCTrapDeviceVendor, xfsDSCTrapMIBVersion, xfsDSCTrapEvent,

 xfsDSCTrapDate, xfsDSCTrapSPVersion, xfsDSCTrapManagedServiceStatus }

 STATUS current

 DESCRIPTION

 "This trap indicates a change in the summary status of a managed

 service. Refer to the status table of this managed service to

 obtain details of the status."

 ::= { xfsTrapV2 1 }

 -- 1.3.6.1.4.1.16213.3.0.2

 xfsErrorTrap NOTIFICATION-TYPE

 OBJECTS { xfsErrorTrapSysName, xfsErrorTrapManagedServiceName,

xfsErrorTrapManagedServiceClass, xfsErrorTrapManagedServiceClassName,

xfsErrorTrapManagedServiceType,

 xfsErrorTrapManagedServiceOid, xfsErrorTrapPhysicalDeviceName,

xfsErrorTrapDeviceVendor, xfsErrorTrapMIBVersion, xfsErrorTrapEvent,

 xfsErrorTrapDate, xfsErrorTrapSPVersion, xfsErrorTrapSuggestedAction,

xfsErrorTrapDescrString, xfsErrorTrapAppId

 }

CWA 15748-29:2011 (E)

44

 STATUS current

 DESCRIPTION

 "This trap indicates a hardware or software error. Refer to the

 status table of this managed service to obtain details of the

 status."

 ::= { xfsTrapV2 2 }

 -- 1.3.6.1.4.1.16213.3.0.3

 xfsThresholdTrap NOTIFICATION-TYPE

 OBJECTS { xfsCommonTrapManagedServiceName, xfsCommonTrapManagedServiceClass,

xfsCommonTrapManagedServiceClassName, xfsCommonTrapManagedServiceType,

xfsCommonTrapManagedServiceOid,

 xfsCommonTrapPhysicalDeviceName, xfsCommonTrapDeviceVendor,

xfsCommonTrapMIBVersion, xfsCommonTrapEvent, xfsCommonTrapDate,

 xfsCommonTrapSPVersion, xfsThresholdTrapSource, xfsThresholdTrapStatus }

 STATUS current

 DESCRIPTION

 "This trap exposes details of events belonging to the class USER_EVENTS,

defined by the CEN XFS Interface Specification. Such events are specific to each

service class and indicate that some form of user intervention is required."

 ::= { xfsTrapV2 3 }

 -- 1.3.6.1.4.1.16213.3.0.4

 xfsHeartbeatTrap NOTIFICATION-TYPE

 OBJECTS { xfsCommonTrapSysName, xfsCommonTrapMIBVersion, xfsCommonTrapDate,

xfsHeartbeatTrapMode, xfsAgentHeartbeatInterval

 }

 STATUS current

 DESCRIPTION

 "This trap generates heartbeat of the XFS SNMP Agent at a configurable

time-slice."

 ::= { xfsTrapV2 4 }

-- Copy here all the device specific MIBs

--

*

--

-- The xfsMIBRoot (1.3.6.1.4.1.16213)

-- Trap Description (1.3.6.1.4.1.16213.3)

--

-- Implementation of both traps is mandatory for all agents

-- supporting the XFS MIB.

--

--

*

 -- 1.3.6.1.4.1.16213.3.1

 xfsTrapV1 OBJECT IDENTIFIER ::= { xfsTrap 1 }

-- **

-- Device Status Change Trap

-- **

 -- 1.3.6.1.4.1.16213.3.1.1

 xfsDSCTrapVars OBJECT IDENTIFIER ::= { xfsTrapV1 1 }

 -- 1.3.6.1.4.1.16213.3.1.1.1

 xfsDSCTrapSysName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the workstation hosting the managed service

 generating the alarm."

 ::= { xfsDSCTrapVars 1 }

 -- 1.3.6.1.4.1.16213.3.1.1.2

 xfsDSCTrapManagedServiceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

CWA 15748-29:2011 (E)

45

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the managed service generating the alarm."

 ::= { xfsDSCTrapVars 2 }

 -- 1.3.6.1.4.1.16213.3.1.1.3

 xfsDSCTrapManagedServiceClass OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The identifier of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsDSCTrapVars 3 }

 -- 1.3.6.1.4.1.16213.3.1.1.4

 xfsDSCTrapManagedServiceClassName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsDSCTrapVars 4 }

 -- 1.3.6.1.4.1.16213.3.1.1.5

 xfsDSCTrapManagedServiceType OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The type identifier of the XFS service class for the managed

 service generating the alarm."

 ::= { xfsDSCTrapVars 5 }

 -- 1.3.6.1.4.1.16213.3.1.1.6

 xfsDSCTrapManagedServiceOid OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The OID of the sub-tree defining the management information for

 this class of managed service."

 ::= { xfsDSCTrapVars 6 }

 -- 1.3.6.1.4.1.16213.3.1.1.7

 xfsDSCTrapPhysicalDeviceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the physical device or devices associated with the

 managed service generating the alarm. If there is more than one

 device, the names are comma-separated."

 ::= { xfsDSCTrapVars 7 }

 -- 1.3.6.1.4.1.16213.3.1.1.8

 xfsDSCTrapDeviceVendor OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the Service Provider vendor associated with the

 managed service generating the alarm."

 ::= { xfsDSCTrapVars 8 }

 -- 1.3.6.1.4.1.16213.3.1.1.9

CWA 15748-29:2011 (E)

46

 xfsDSCTrapMIBVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS MIB release that this trap conforms to."

 ::= { xfsDSCTrapVars 9 }

 -- 1.3.6.1.4.1.16213.3.1.1.10

 xfsDSCTrapEvent OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS event ID of the event generating the alarm."

 ::= { xfsDSCTrapVars 10 }

 -- 1.3.6.1.4.1.16213.3.1.1.11

 xfsDSCTrapDate OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This variable represents the UTC and bias for local translation

 of the date and time when the event was generated."

 ::= { xfsDSCTrapVars 11 }

 -- 1.3.6.1.4.1.16213.3.1.1.12

 xfsDSCTrapSPVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The vendor-defined version of the Service Provider generating the

 alarm."

 ::= { xfsDSCTrapVars 12 }

 -- 1.3.6.1.4.1.16213.3.1.1.13

 xfsDSCTrapManagedServiceStatus OBJECT-TYPE

 SYNTAX IxfsMIBDeviceStatus

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The status of the managed service, which corresponds to the

 dwState field in the event data from the Service Provider."

 ::= { xfsDSCTrapVars 13 }

-- **

-- Error Trap

-- **

 -- 1.3.6.1.4.1.16213.3.1.2

 xfsErrorTrapVars OBJECT IDENTIFIER ::= { xfsTrapV1 2 }

 -- 1.3.6.1.4.1.16213.3.1.2.1

 xfsErrorTrapSysName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the workstation hosting the managed service

 generating the alarm."

 ::= { xfsErrorTrapVars 1 }

 -- 1.3.6.1.4.1.16213.3.1.2.2

 xfsErrorTrapManagedServiceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

CWA 15748-29:2011 (E)

47

 DESCRIPTION

 "The name of the managed service generating the alarm."

 ::= { xfsErrorTrapVars 2 }

 -- 1.3.6.1.4.1.16213.3.1.2.3

 xfsErrorTrapManagedServiceClass OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The identifier of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsErrorTrapVars 3 }

 -- 1.3.6.1.4.1.16213.3.1.2.4

 xfsErrorTrapManagedServiceClassName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsErrorTrapVars 4 }

 -- 1.3.6.1.4.1.16213.3.1.2.5

 xfsErrorTrapManagedServiceType OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The type identifier of the XFS service class for the managed

 service generating the alarm."

 ::= { xfsErrorTrapVars 5 }

 -- 1.3.6.1.4.1.16213.3.1.2.6

 xfsErrorTrapManagedServiceOid OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The OID of the sub-tree defining the management information for

 this class of managed service."

 ::= { xfsErrorTrapVars 6 }

 -- 1.3.6.1.4.1.16213.3.1.2.7

 xfsErrorTrapPhysicalDeviceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the physical device or devices associated with the

 managed service generating the alarm. If there is more than one

 device, the names are comma-separated."

 ::= { xfsErrorTrapVars 7 }

 -- 1.3.6.1.4.1.16213.3.1.2.8

 xfsErrorTrapDeviceVendor OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the Service Provider vendor associated with the

 managed service generating the alarm."

 ::= { xfsErrorTrapVars 8 }

 -- 1.3.6.1.4.1.16213.3.1.2.9

 xfsErrorTrapMIBVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

CWA 15748-29:2011 (E)

48

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS MIB release that this trap conforms to."

 ::= { xfsErrorTrapVars 9 }

 -- 1.3.6.1.4.1.16213.3.1.2.10

 xfsErrorTrapEvent OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS event ID of the event generating the alarm."

 ::= { xfsErrorTrapVars 10 }

 -- 1.3.6.1.4.1.16213.3.1.2.11

 xfsErrorTrapDate OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This variable represents the UTC and bias for local translation

 of the date and time when the event was generated."

 ::= { xfsErrorTrapVars 11 }

 -- 1.3.6.1.4.1.16213.3.1.2.12

 xfsErrorTrapSPVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The vendor-defined version of the Service Provider generating the

 alarm."

 ::= { xfsErrorTrapVars 12 }

 -- 1.3.6.1.4.1.16213.3.1.2.13

 xfsErrorTrapSuggestedAction OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The suggested action required to handle the error, it corresponds

 to the dwAction field in the XFS event data from the service

 provider."

 ::= { xfsErrorTrapVars 13 }

 -- 1.3.6.1.4.1.16213.3.1.2.14

 xfsErrorTrapDescrString OBJECT-TYPE

 SYNTAX OCTET STRING

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "A description of the alarm, defined by the vendor of the service

 provider generating the alarm."

 ::= { xfsErrorTrapVars 14 }

 -- 1.3.6.1.4.1.16213.3.1.2.15

 xfsErrorTrapAppId OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The ID of the application associated with the XFS session

 generating the alarm."

 ::= { xfsErrorTrapVars 15 }

-- **

-- Common Trap Variables

CWA 15748-29:2011 (E)

49

-- **

 -- 1.3.6.1.4.1.16213.3.1.3

 xfsCommonTrapVars OBJECT IDENTIFIER ::= { xfsTrapV1 3 }

 -- 1.3.6.1.4.1.16213.3.1.3.1

 xfsCommonTrapSysName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the workstation hosting the managed service

 generating the alarm."

 ::= { xfsCommonTrapVars 1 }

 -- 1.3.6.1.4.1.16213.3.1.3.2

 xfsCommonTrapManagedServiceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the managed service generating the alarm."

 ::= { xfsCommonTrapVars 2 }

 -- 1.3.6.1.4.1.16213.3.1.3.3

 xfsCommonTrapManagedServiceClass OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The identifier of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsCommonTrapVars 3 }

 -- 1.3.6.1.4.1.16213.3.1.3.4

 xfsCommonTrapManagedServiceClassName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the XFS service class for the managed service

 generating the alarm."

 ::= { xfsCommonTrapVars 4 }

 -- 1.3.6.1.4.1.16213.3.1.3.5

 xfsCommonTrapManagedServiceType OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The type identifier of the XFS service class for the managed

 service generating the alarm."

 ::= { xfsCommonTrapVars 5 }

 -- 1.3.6.1.4.1.16213.3.1.3.6

 xfsCommonTrapManagedServiceOid OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The OID of the sub-tree defining the management information for

 this class of managed service."

 ::= { xfsCommonTrapVars 6 }

 -- 1.3.6.1.4.1.16213.3.1.3.7

 xfsCommonTrapPhysicalDeviceName OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

CWA 15748-29:2011 (E)

50

 DESCRIPTION

 "The name of the physical device or devices associated with the

 managed service generating the alarm. If there is more than one

 device, the names are comma-separated."

 ::= { xfsCommonTrapVars 7 }

 -- 1.3.6.1.4.1.16213.3.1.3.8

 xfsCommonTrapDeviceVendor OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The name of the Service Provider vendor associated with the

 managed service generating the alarm."

 ::= { xfsCommonTrapVars 8 }

 -- 1.3.6.1.4.1.16213.3.1.3.9

 xfsCommonTrapMIBVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS MIB release that this trap conforms to."

 ::= { xfsCommonTrapVars 9 }

 -- 1.3.6.1.4.1.16213.3.1.3.10

 xfsCommonTrapEvent OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The XFS event ID of the event generating the alarm."

 ::= { xfsCommonTrapVars 10 }

 -- 1.3.6.1.4.1.16213.3.1.3.11

 xfsCommonTrapDate OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This variable represents the UTC and bias for local translation

 of the date and time when the event was generated."

 ::= { xfsCommonTrapVars 11 }

 -- 1.3.6.1.4.1.16213.3.1.3.12

 xfsCommonTrapSPVersion OBJECT-TYPE

 SYNTAX DisplayString (SIZE (0..255))

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The vendor-defined version of the Service Provider generating the

 alarm."

 ::= { xfsCommonTrapVars 12 }

 -- 1.3.6.1.4.1.16213.3.1.3.13

 xfsCommonTrapResetDeviceResult OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The result of the request to reset the device. The values have the

following meaning:

 zero - the reset was executed successfully (however the

device may not be operational, see the device

 status fields).

 one - the reset was rejected because exclusive access could

not be obtained.

 two - the reset was rejected because Device Resets are

disabled on this terminal.

CWA 15748-29:2011 (E)

51

 negative - the reset request was executed but failed and the value

corresponds to the XFS error code."

 ::= { xfsCommonTrapVars 13 }

-- **

-- Threshold Trap & Associated Variables

-- **

 -- 1.3.6.1.4.1.16213.3.1.4

 xfsThresholdTrapVars OBJECT IDENTIFIER ::= { xfsTrapV1 4 }

 -- 1.3.6.1.4.1.16213.3.1.4.1

 xfsThresholdTrapSource OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The device source component (e.g. bin number) associated with the user

event, which only applies to some user events. A value of zero indicates that the

event data did not include this detail, either because it does not apply to this

user event or because the Service Provider supports a version of the XFS standard

that does not define this event data."

 ::= { xfsThresholdTrapVars 1 }

 -- 1.3.6.1.4.1.16213.3.1.4.2

 xfsThresholdTrapStatus OBJECT-TYPE

 SYNTAX Integer32

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "The current threshold state. The value corresponds to the threshold

value in the event data from the Service Provider."

 ::= { xfsThresholdTrapVars 2 }

-- **

-- Heartbeat Trap & Associated Variables

-- **

 -- 1.3.6.1.4.1.16213.3.1.5

 xfsHeartbeatTrapVars OBJECT IDENTIFIER ::= { xfsTrapV1 5 }

 -- 1.3.6.1.4.1.16213.3.1.5.1

 xfsHeartbeatTrapMode OBJECT-TYPE

 SYNTAX INTEGER

 {

 xfsVDMEnterPending(1),

 xfsVDMActive(2),

 xfsVDMExitPending(3),

 xfsVDMInactive(4)

 }

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This variable binding contains heartbeat information in integer format.

Possible values are:

 xfsVDMEnterPending(1) Vendor Dependent mode enter request pending.

 xfsVDMActive(2) Vendor Dependent mode Active.

 xfsVDMExitPending(3) Vendor Dependent mode exit request pending.

 xfsVDMInactive(4) Vendor Dependent mode Inactive."

 ::= { xfsHeartbeatTrapVars 1 }

 -- 1.3.6.1.4.1.16213.3.2

 xfsTrapV2 OBJECT IDENTIFIER ::= { xfsTrap 2 }

 END

--

--

CWA 15748-29:2011 (E)

52

6. Appendix B - C-Header files

6.1 XFSMIB.H

/**

* *

* xfsmib.h XFS - MIB functions, types, and definitions *

* *

* Version 3.10 -- Dec 14, 2010 *

* *

**/

#ifndef __inc_xfsmib__h

#define __inc_xfsmib__h

#ifdef __cplusplus

extern "C" {

#endif

/* be aware of alignment */

#pragma pack(push,1)

/****** Common ***/

#include <windows.h>

#include <xfsapi.h>

/* XFS MIB Command codes */

#define WFS_MIB_OFFSET (60000)

#define WFS_INF_MIB_GET_RESPONSE_COUNTS (WFS_MIB_OFFSET+1)

#define WFS_INF_MIB_SET_RESPONSE_COUNT (WFS_MIB_OFFSET+2)

#define WFS_INF_MIB_RESET_RESPONSE_COUNTS (WFS_MIB_OFFSET+3)

/* XFS MIB Count structures common across all devices */

typedef struct _wfs_mib_response_count

{

 DWORD dwCommandCode;

 LONG lResponseCode;

 DWORD dwResponseCount;

} WFSMIBRESPONSECOUNT, * LPWFSMIBRESPONSECOUNT;

typedef struct _wfs_mib_reset_response_counts

{

 SYSTEMTIME tsTimestamp;

} WFSMIBRESETRESPONSECOUNTS, * LPWFSMIBRESETRESPONSECOUNTS;

/* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} /*extern "C"*/

#endif

#endif /* __inc_xfsmib__h */

